Light Water Reactor Materials Issues **Larry Nelson** **ATR NSUF Users Week** ### **Overview** - Material Degradation Overview - BWR vs. PWR Features - BWR Major Internal Components - BWR Evolution - SCC In BWRs - Material Processing Issues - Crack Initiation TM - ECP Monitoring & NobleChem - PWR Water Chemistry & Cracking Issu # **Reactor Types in the US** **Pressurized Water Reactor (PWR)** **Boiling Water Reactor (BWR-6)** # **Materials Degradation** - "MD" is a very broad description and widely applicable - Concrete, wire insulation, service water, roofing - Forms of materials degradation can span: - Fracture toughness radiation or environmental effects - Fatigue thermal mixing, resonance, water hammer... - Stress corrosion cracking (~static load) - Corrosion fatigue (cyclic load) - Localized corrosion pitting, crevice corrosion, IG attack - Flow assisted corrosion and erosion-corrosion - General corrosion - Focus on structural materials used as pressure boundaries or vessel internal components # **Historical View of Environmental Cracking** - discovered ductile <u>Overload</u> failure of metals (UTS) - repeated loading to <50% UTS caused <u>Fatigue</u> failure - fails in environment sooner Corrosion Fatigue (CF) - fails at constant load <u>Stress Corrosion Cracking</u> (SCC) at progressively less aggressive environments & loads The adequacy of design & live evaluation codes drops dramatically from Overload \rightarrow Fatigue \rightarrow CF \rightarrow SCC As designs account for fatigue and push to higher performance and longer lives, CF and SCC will increase Solely-mechanics-based codes are inadequate # **Broad View of Environmental Cracking** - Static & Dynamic (monotonic & cyclic) - Cracking on Smooth Specimens at <1 ksi - Range of frequency, ΔK , $\Delta \sigma$ - Gaseous: H₂, C₂H₆.... (H[•]) - $-N_2O_4$ - Steam - O₂, Air? - Liquid Metals #### **ENVIRONMENTAL CRACKING** - Rates $< 10^{-12}$ to 10^0 m/s - Stress Corrosion Cracking - Corrosion Fatigue - Hydrogen Embrittlement - (Liquid Metal Embrittlement) - (Environmental Creep-Fatigue) - Metallic & Non-metallic (glasses, plastics, ceramics) - Crystalline & Amorphous - High strength & Ductile - Alloys & Pure Metals # SCC Occurs in Stainless Steels & Ni Alloys # BWR Sens. SS Piping → Core Components #### **Operating BWRs** | | N. America | Europe | Asia | Total | |--------|------------|--------|------|-------| | GE | 36 | 4 | 11 | 51 | | Non-GE | 0 | 16 | 21 | 38 | | _ | | | | | 80,000 MWe installed #### **Stress Corrosion Cracking History** •1969 1st detected in sensitized SS •1970s Stainless steel welded piping •1980s BWR internals •1990s Low stress BWR internals → NobleChemTM SCC mitigation # **SCC in PWRs** # PWR Design (Shows A600/82/182 Use) SS failures in O₂ stagnant areas: seals, check valves, etc. and in irradiated SS – concern for cracking in weld HAZs # Why Did Surprises Occur? - Reliance on low temperature data ("stainless steel" ok in "pure water") - "Reasonable" assumption that <0.1 ppm levels of Cl & SO₄ would be ok - Limited knowledge of weld sensitization and its importance in "pure water" - Reliance on simple screening tests insensitive to low growth rates needed for 40 yr life - Assumption of SCC immunity (from accelerated tests) - Tendency to see failures as "unique", not forewarning # Why Did Surprises Occur? - Belated recognition of importance of: - sensitization (~1960 65) - cold work (~1965 69) - sensitivity to <10 ppb Cl/SO4 (~1980) - data quality & test techniques (~1990) - weld residual strain (~1995) - high Si content & radiation segregation (~2000 01) - role of changing K vs. crack depth, dK/da (~2003) - environmental effect on fracture toughness (~2003) - Loss of proactive or active response to emerging issues - SCC is complex mix of metallurgy, mechanics, environment # **Engineering Factors in SCC** - Corrosion Potential (esp. oxidants) - Water Purity esp. Cl & SO4 - Yield Strength / Cold Work in bulk, surface or weld heat affected zone - Environment Stress Microstructure - Stress Intensity Factor and cycling / vibration - Sensitization (grain boundary Cr depletion) - Grain Boundary Carbides; Low Energy Boundaries - Temperature & Temperature Gradients / Boiling - Composition (Mo, Ti, Nb, Iow C, high N) not that important apart from decreasing sensitization # **BWR vs. PWR** #### PWR and BWR... the main differences #### **Pressurized Water Reactor** # Pressurizer #### Chemical & **Volume Control** Pressure/Temperature Reactor Pressure Vessel T/G **Turbine** Generator Steam Generator Condenser 2 loops heat balance/ heat transfer #### **Boiling Water Reactor** ## **Principle of Steam Generation** #### **BWR** - RPV Pressure ~7 MPa (1020 psig) - RPV Temperature 288 °C (550 °F) - Steam Generated in RPV (with Separator & Dryer) - Bulk Boiling Allowed in RPV #### **PWR** - RPV Pressure ~15 MPa (~2240 psig) - RPV Temperature 326 °C (~618 °F) - Steam Generated in Steam Generator (via Second Loop) - No Bulk Boiling in RPV BWR has Lower RPV Pressure and Simplified Steam # **Major NSSS Components** #### **BWR** - RPV (with Dryer & Separator) - No Steam Generator - No Pressurizer - Natural Circulation (ESBWR) - RPV mounted pumps (ABWR) - Bottom Entry Control Rod Drives #### **PWR** - RPV - 2 4 Steam Generators - 1 Pressurizer - Reactor Coolant Pumps outside of RPV - Top Entry Control Rod Clusters # **BWR Big Picture** # **BWR Primary Containment** # **ABWR Power Cycle** # BWR Major Internal Components # **BWR Jet Pump** - Provide core flow to control reactor power which yields higher power level without increasing the Rx size - Provide part of the boundary required to maintain 2/3 core height following a recirculation line break event #### **Lower Plenum** - CRD Guide Tubes - CRBs - CRD housings - Stub Tubes - In-core Housings - Guide Tubes - Flux monitor dry tubes #### **BWR Core Shroud** - Stainless Steel Cylinder - Surrounds the Core - Separates upward flow through the core from downward flow in the downcomer annulus - Provides a 2/3 core height floodable volume # **Fuel Assembly & Control Blade** # **Steam Separator** - Turning vanes impart rotation to the steam/water mixture causing the liquid to be thrown to the outside - 163 standpipes ## **Steam Dryer** - Provides Q_{steam dryer} = 99.9% to the Main Turbine - Wet steam is forced horizontally through dryer panels - Forced to make a series of rapid changes in direction - Moisture is thrown to the outside - Initial power uprate plants experiences FIV – minimized by design improvements # **BWR** Evolution ### **BWR Reactor Evolution** # **Operating Parameters for Selected BWRs** | <u>Parameter</u> | BWR/4
(Browns Ferry
3) | BWR/6
(Grand Gulf 1) | <u>ABWR</u> | <u>ESBWR</u> | |------------------------------|------------------------------|-------------------------|-------------|--------------| | Power (MWt / MWe) | 3293/1098 | 3900/1360 | 3926/1350 | 4500/1590 | | Vessel height / diameter (m) | 21.9/6.4 | 21.8/6.4 | 21.1/7.1 | 27.6/7.1 | | Fuel Bundles (number) | 764 | 800 | 872 | 1132 | | Active Fuel height (m) | 3.7 | 3.7 | 3.7 | 3.0 | | Power density (kW/l) | 50 | 54.2 | 51 | 54 | | Recirculation pumps | 2 (large) | 2 (large) | 10 | zero | | Number of CRDs / type | 185/LP | 193/LP | 205/FM | 269/FM | | Safety system pumps | 9 | 9 | 18 | zero | | Safety Diesel Generator | 2 | 3 | 3 | zero | | Core damage freq./yr | 1E-5 | 1E-6 | 1E-7 | 1E-8 | | Safety Bldg Vol (m³/MWe) | 120 | 170 | 180 | 135 | #### **ESBWR** Reactor Pressure Vessel #### **ESBWR** - 1. Vessel Flange and closure head - 2. Steam outlet flow restrictor - 3. Feedwater nozzle - 4. Feedwater sparger - 5. Vessel support - 6. Vessel bottom head - 7. Stabilizer - 8. Forged shell rings - 9. Core shroud - 10. Shroud support brackets - 11. Core plate - 12. Top guide - 13. Fuel supports - 14. Control rod drive housings - 15 Control rod guide tubes - 16. In-core housing - 17. Chimney - 18. Chimney partitions - 19. Steam separator assembly - 20. Steam dryer assembly - 21. DPV/IC outlet - 22. IC return - 23. GDCS inlet - 24. GDCS equalizing line inlet - 25. RWCU/SDC outlet - 26. Control rod drives - 27. Fuel and control rods # Stress Corrosion Cracking in BWRs #### "Nuclear Chain Reactions on One Slide" Radioactive by-products e.g. Kr, Cs, I, Ba, Th, Np # BWR Sens. SS Piping → Core Components #### **Operating BWRs** | | N. America | Europe | Asia | Total | |----------|---------------|--------|------|-------| | GE | 36 | 4 | 11 | 51 | | Non-GE | 0 | 16 | 21 | 38 | | 80,000 1 | MWe installed | | | | GE Global Research #### **Stress Corrosion Cracking History** •1969 1st detected in sensitized SS •1970s Stainless steel welded piping •1980s BWR internals •1990s Low stress BWR internals \rightarrow NobleChemTM SCC mitigation # **Cracking in Jet Pump Assembly** # **Cracking in Core Spray Piping** - Safety system contains many welds - Highly oxidizing environment - Not able to be protected with changes in water chemistry # **Top Guide Cracking** - Very redundant structure - Long term risk of IASCC after long radiation exposure # **Steam Dryer Cracking** Significant fatigue/corrosion fatigue cracking found following power uprates ### **Stress Corrosion Cracking** Weld Cr depletion occurs during welding of stainless steels with high carbon levels Plastic strain occurs during welding and leads to cracking in stainless steels with low carbon (L-grade SS) ### **Balancing Factors in Location of SCC** SCC = f (residual σ , residual ϵ , sensitization – & ECP, water chemistry...) #### **Role of Deformation Kinetics in SCC** Deformation impinges on crack tip as large shear strains, readily producing oxide fracture The crack growth rate – crack tip strain rate synergy is complex spatially & in time: - passivation can continue > 10⁶s - different slip planes activated - many grains in "linked influence zone" The same processes affect crack nucleation Localization of deformation on smooth surfaces plays a large role, esp. if no chemical (e.g., Cr) preference exists ### **Crack Tip Strain Rate** At constant load, crack tip strain rate occurs due to strain redistribution Conceptually, the zone of influence is the distance over which there is a direct influence on the crack tip strain rate #### **Plastic Strains at Welds** Typical Shroud & Pipe Welds and Strain Levels in Heat Affected Zone (HAZ) #### **Residual Strain Discussion** Residual strains result from shrinkage during welding Geometry / constraint believed to control magnitude of strain Deformation / cold work / residual strain promotes IGSCC # **SCC Water Purity Mitigation Taken** Improved BWR water; $0.055 \mu \text{S/cm} = \text{theoretical purity}$ $0.10 \mu \text{S/cm} = 10 \text{ ppb CI}^{-}$; $0.9 \mu \text{S/cm} = 100 \text{ ppb CI}^{-}$ **Stress Corrosion Cracking Prediction &** **Application** Complex phenomenon must be understood mechanistically as "crack tip system" processeg B Lab understanding & data must be verified by plant data before use in BWR prediction Insights yield novel technology like NobleChem ### SCC, ECP and NobleChem™ Basics #### **Crack Growth Response** - High crack growth rates at high corrosion potential (ECP) - ECP is a dominant variable effecting SCC response # Electro Chemical Potential (ECP) Response #### Radiation Field Response Hydrogen injection results in an increase in main steam line radiation fields - With excess H2, O2 is consumed & its level at the surface is zero - H₂ + O₂ reaction is catalyzed with NobleChem particles - Hydrogen added is more effective lower radiation fields #### **Irradiation-Assisted Stress Corrosion** - Cr depletion occurs at grain boundary not an issue at low corrosion potentials - Si enrichment occurs –soluble in high temperature water - Irradiation hardening occurs as a result of neutron damage - Irradiation creep helps to decrease residual welding stress - Understanding strain distribution at crack tip will enhance basic model development # Irradiation-Assisted Stress Corrosion Cracking Type 304 + 1.5% Si Type 304 + 5% Si #### **High Strength Type 304** - Increased Si results in high crack growth rates at low potentials in stainless steels - Increased yield strength (cold rolling) results in high crack growth rates at low potentials in stainless steels - NobleChem will not effectively mitigate cracking in highly irradiated materials # Irradiation-Assisted Stress Corrosion Cracking #### NobleChem + 20 ppb Zn²⁺ # Longer-term Effects of Zn on SCC - Injection of Zn⁺² at low potentials may mitigate cracking in highly irradiated materials - Future work will investigate the effect of Zn on Si containing alloys - Zn is currently injected at low levels (5-7ppb) into reactor feed water for radiation field control # Material Processing Issues # **Thermal Mechanical Processing** Carefully controlled thermal mechanical processing is needed to achieve uniform microstructures and mechanical properties #### Unrecrystallized grains due to ingot conversion practice Example of a poorly converted alloy X750 billet that retains unrecrystallized dendrite cores at outer billet locations and carbide clusters. # Characterization of Ingot Deformation - Flow Behavior Post Deformation Appearance of 2" Test Samples **Coarse Dendrite Ingot Structure Fine Dendrite Ingot Structure** #### Unrecrystallized grains due to ingot conversion practice X100 100 m 0010 x750BoltTr Remnant cores of unrecrystallized ingot Dendrites in X-750 # **Thermal Mechanical Processing** # Jet Pump Beam: Alloy X-750 ### **Ni-Base Superalloys** #### Hardening Elements | | Ni | Cr | Fe | Ti | A | Nb | Mo | С | |-------------|-------------|-------------|------|-------------|-----------|------------|-----------|----------| | Alloy X-750 | 70 min | 14.0 - 17.0 | 6.5 | 2.25 - 2.75 | 0.4 - 1.0 | 0.7 - 1.2 | | 0.08 max | | Alloy 718 | 50.0 - 55.5 | 17.0 - 21.0 | 16.8 | 0.65 - 1.15 | 0.2 - 0.8 | 4.75 | 2.8 - 3.3 | 0.08 max | | Alloy 725 | 55.0 - 59 | 19 - 22.5 | bal | 1.0 - 1.7 | 0.35 max | 2.75 - 4.0 | 7.0 - 9.5 | 0.03 max | **Hardening Phases** Grain Size Control Phases Ni₃(Al, Ti, Cr) γ ' – meta stable η – Ni₃Ti - Ni_3Nb γ " – meta stable δ - stable **Carbide Phases** stable $$Cr_{23}C_6$$ NbC $TiNb(C,N)$ # Comparison: SCC Growth in Alloys X-750, 718 & 725 X-750 718 **725** | <u>Alloy</u> | High ECP | Low ECP | |--------------|--------------------------|------------------------| | X-750 | 6.8 x 10 ⁻⁷ | 1.3 x 10 ⁻⁸ | | 718 | 4.4 x 10 ⁻⁷ | 5.0 x 10 ⁻⁹ | | 725 | <8.3 x 10 ⁻¹⁰ | | Units (mm/s) Significant reduction in SCC in alloy 725 vs. alloys X-750 and 718 # **Crack Initiation** # **SCC** Initiation Mitigation #### **Desirable Surface Improvement Traits:** - Creates a compressive surface stress - Removes surface and subsurface defects - Does not alter the properties of the alloy - Leaves a smooth defect free surface #### **SCC** in Weldments Contributing factors introduced during original fabrication processes: Cold worked surface layers – residual plastic strain enhances SCC growth rate High tensile residual stresses — drives SCC propagat Schrifted 304 Stainles SCC propagat Schrifted 304 Stainles SCC propagat Schrifted 304 Stainles <u>Surface roughness</u> – provides SCC initiation sites Plastic strain induced surface damage to weld metal structure Sensitized 304 Stainless Steel # Surface Conditioning with ReNew[™]Process **As Welded** **ReNew**TM **Treated** Residual plastic strain due to welding is drastically reduced with ReNew process # Surface Conditioning with ReNew[™] Process Residual plastic strain reduced, SCC initiation resistance improved # **ECP Monitoring & NobleChem™** Oxidant (H₂O₂ and O₂) Generation By Water #### **Effect of ECP on Crack Growth Rate** #### **Strong Effect of Corrosion Potential** # **BWR ECP Monitoring Locations** ### **Bottom Plenum ECP Response** # **Basis for NobleChem™Technology** # Noble Metal Distribution After On-Line Application Nano-particle Pt Generation By On-Line NobleChem™ #### **ECP Reduction With NobleChem™** #### **Provides Low ECPs At All Internal** # PWR Water Chemistry & Cracking Issues #### Role of H₂ and B/Li/pH Water Chemistry - Connection between BWR & PWR leverages data & understanding - Extensive PWR data – applicable because B/Li/pH is not important in deaerated water - There is a ~16X peak vs. H₂ for Alloy 82/182 weld metal that is relevant to BWRs #### **B/Li Effects at Constant pH** No effect on CGR of wide range of B/Li/pH_T in deaerated water. Expect PWR primary ≈ BWR low potential, with correction for T & H₂ #### **B/Li Effects At Varying pH** No effect of B/Li chemistry Pure water \rightarrow 600B / 2.2Li $$pH_{325C} = 5.86 \rightarrow 7.53$$ #### **EPRI Analysis on Alloy 82 & 182/132 in PWRs** Alloy 82 only shows 2.6X CGR difference vs. Alloy 182. **Expect PWR primary** ≈ **BWR low potential**, with correction for **T** & H₂ **GE Global Research** 78 ### Ni Alloy Crack Growth Rate vs. H₂ KAPL data: consistent benefit of 7H2 250 - 360 C The change to 80 cc/kg H₂ causes short term decrease in crack length in dc potential drop due Ni-metal formation in crack The change to 1.35 cc/kg H_2 causes short term decrease in crack length, then more rapid short term increase as H_2 is reduced to 10 Peak (Ni/NiO boundary) at 325C is 10.4 cc/kg H₂ Observed a larger effect than predicted from an "8X peak" The change to 80 cc/kg H₂ causes short term decrease in crack length – more time needed to get steady-state growth rate. Peak (Ni/NiO boundary) at 325C is 10.4 cc/kg H₂ Observed a larger effect than predicted from an "8X peak". c385, 10.4 cc/kg H2 – more nucleation and more crack advance. c386, 80 cc/kg H2 – lower nucleation and less crack advance Note Ni-metal stability gives shiny fracture. Peak (Ni/NiO boundary) at 325C is 10.4 cc/kg H2 Observed a larger effect than predicted from an "8X peak". #### Role of H₂ and B/Li/pH Water Chemistry Connection between BWR & PWR leverages data & understanding Extensive PWR data – applicable because B/Li/pH is not important in deaerated water There is a ~8X peak vs. H₂ for Alloy 82/182 weld metal that is relevant to BWRs #### Role of H₂ and B/Li/pH Water Chemistry Peak growth rate occurs at much lower H₂ at 274C of BWR materials ## **Summary & Conclusions** - SS and Ni-base alloys and weldments are susceptable to SCC in both PWRs and BWRs - Demand on materials will increase with increased power rating - PWR and BWR water chemistry have similar effects on crack growth - H₂ effect is dominant at low potentials - Effective mitigation method for IASCC is not known - Material processing and alloy chemistry important for SCC resistance - Starface residual strain must be reduced to minimize crack ## **Questions?**